

Specific motivations

- There is a lot we don't know about inflation
- Apart from the many inflation models, also many mechanisms after inflation could "generate" the perturbations
 - Curvaton late decaying scalar field
 - Modulated reheating time of reheating depends on position
 - Modulated preheating efficiency of preheating varies
 - Inhomogeneous end of inflation time inflation ends varies

Need many observables to discriminate between scenarios So how much could we learn, and what should we look for in the forthcoming data?

Predictions should come first!

The bispectrum

Simplest definition, motivated but not exact – "local model"

$$\zeta(\mathbf{x}) = \zeta_G(\mathbf{x}) + \frac{3}{5} f_{NL} \zeta_G^2(\mathbf{x})$$

 Can picture the bispectrum as a triangle, with wavenumbers k denoting the side lengths

$$\frac{6}{5}f_{NL}(k_1, k_2, k_3) \equiv \frac{B_{\zeta}(k_1, k_2, k_3)}{P_{\zeta}(k_1)P_{\zeta}(k_2) + 2 \text{ perms}}$$

- Usually reduced to an amplitude times scale-independent shape function
- Focus on quasi-local shape

Other shapes: Equilateral, folded, orthogonal

See lots of other talks including next three: Shellard, Fergusson, Liguori

Simple extension of local f_{NL}

The multivariate local model

$$\zeta(x) = \zeta_{G,\phi}(x) + \zeta_{G,\chi}(x) + f_{\chi}\zeta_{G,\chi}^{2}(x) + g_{\chi}\zeta_{G,\chi}^{3}(x)$$

phi is the Gaussian inflaton field, uncorrelated chi generates non-Gaussianity quite general - applies to mixed inflaton and curvaton/modulated reheating scenarios, provided f_χ is a constant

Bispectrum has the usual local shape – not changed $B_{\zeta}=B_{\zeta_{\chi}}$

$$P_{\zeta}(k) = P_{\zeta_{\phi}}(k) + P_{\zeta_{\chi}}(k), \quad P_{\zeta} \propto k^{n-4}, \quad P_{\zeta_{\chi}} \propto k^{n_{\chi}-4}$$

$$f_{NL}(k) = \frac{5}{3} \frac{B_{\zeta_{\chi}}}{3P_{\zeta}^{2}} = \frac{5}{3} \frac{P_{\zeta_{\chi}}(k)^{2}}{P_{\zeta}(k)^{2}} f_{\chi} \propto \left(\frac{k}{k_{p}}\right)^{2(n_{\chi}-n)}$$

- So a scale dependence of f_{NL} is simple and natural
- Trispectrum $n_{\tau_{NL}}=n_{g_{NL}}=\frac{3}{2}n_{f_{NL}}=3(n_{\chi}-n)$
- "Minimal" mixed inflaton-curvaton scenario consistency relation

$$n_{f_{NL}} = -2(n-1) \simeq 0.1$$

Some scale dependence is expected!

- Analogous to the power spectrum, f_{NL} (local) should have a mild scale dependence
- Also true for other bispectral shapes, e.g. equilateral
 Varying sound speed in DBI (equilateral form of non-Gaussianity): Chen '05
- Reflects evolution/dynamics during inflation (e.g. it ends)
- Breaks degeneracy between early universe models
 - As well as the trispectrum
- Can distinguish between different non-Gaussian scenarios, not just between Gaussian and non-Gaussian models
- The amplitude of f_{NL} can be tuned in most non-Gaussian models, so a precise measurement of f_{NL} wont do this
- The sign of f_{NL} can distinguish between some models
- Predictions should come first
- Avoid posterior detections (hard to quantify the significance)

Questions?

- How large is the scale dependence?
 - How to calculate it for a given model?
- How does it arise?
 - Multiple fields
 - Self interactions
 - Are observations sensitive to it?
 - What can we learn from it?
 - How to generalise the local ansatz?

Definition of scale dependent f_{NL}

For the equilateral triangle (one k)

$$n_{f_{NL}} \equiv \frac{\partial \log |f_{NL}|}{\partial \log k}$$

- In general f_{NL} trivariate function, so definition needs care
- However $n_{f_{NL}}$ is independent of the shape provided one scales the triangle preserving the shape
 - Hence the above is a useful definition of a new observable
 Byrnes, Nurmi, Tasinato and Wands, '09
 - Not much change if the shape and size of triangle are changed together

Observational prospects

- Planck could reach a tight constraint
- Predicted to reach $\Delta n_{f_{NL}} = 0.1$ for $f_{NL} = 50$
- CMBPol (COrE) has double this sensitivity

CMB: Sefusatti, Ligouri, Yadav, Jackson, Pajer; '09

Galaxy clusters will provide the best constraints

Porciani's talk?

- Error bar is inversely proportional to the fiducial value of f_{NL}
- It is possible that Planck will provide the first detection of non-Gaussianity, and simultaneously detect its scale dependence!
- We have a separable ansatz for the bispectrum
- But its form depends on the source of scale-dependence this is both good and bad!
 Shandera's talk

First LSS simulations: Shandera, Dalal & Huterer '10

LSS: Becker, Huterer, Kadota '10

General Single-field I

- Models where any single field generates the perturbations
 - Not assumed to be the inflaton
- Could be the field which modulates time of reheating or efficiency of preheating
- Arises from the non-linearity of the field evolution just after horizon exit
- Only exception is a free test field (quadratic potential)
 - has a linear equation of motion
- The assumption that f_{NL} is scale independent is only valid in the simplest toy models!
- Example is the simplest curvaton scenario
- Including the inflaton field fluctuations or self interactions will generate a scale dependence

General single field II

 In models with large non-Gaussianity the single field is isocurvature during inflation (assumed adiabatic today)

$$n_{f_{NL}} \sim \frac{\sqrt{r_T}}{f_{NL}} \frac{V'''}{3H^2} \qquad r_T = \frac{P_T}{P_\zeta}$$

$$\tau_{NL} = \left(\frac{6}{5} f_{NL}\right)^2 \Rightarrow n_{\tau_{NL}} = 2n_{f_{NL}}$$

$$n_{g_{NL}} \sim \frac{r_T}{g_{NL}} \frac{V''''}{3H^2} \sim \frac{\mathcal{P}_\zeta^{-1}}{g_{NL}} V''''$$

- Model dependent size, could be large
- Neither spectral index nor its running probe higher derivatives of the isocurvature's field potential
- Only way to probe self-interactions?
- Easy to apply our formulas, please do!
 See: 1007.4277
 - If using delta N, no extra work required! Delta N: Sasaki's talk

Interacting curvaton scenario I

$$V(\chi) = \frac{1}{2}m^2\chi^2 + \lambda m^4 \left(\frac{\chi}{m}\right)^p$$

Strength of self interaction (at horizon exit, *)

$$s = 2\lambda \left(\frac{\chi_*}{m}\right)^{p-2}$$

In the limit of s=0 recover scale invariance

Energy density of curvaton is subdominant during inflation, but it grows relative to that of radiation (from the decayed inflaton) while it oscillates about the minimum of its potential

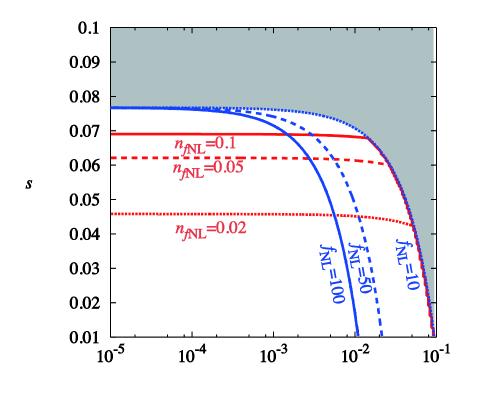
Energy density of curvaton at time of decay

$$r_{dec} \equiv \frac{\rho_{\chi}}{4\rho_{rad} + 3\rho_{\chi}} \Big|_{decay} \qquad f_{NL} \sim \frac{1}{r_{dec}}$$

CB, Enqvist, Takahashi; 1007.5148

Interacting curvaton scenario II

p=6 $\eta_{\chi\chi}=0.005$ larger eta would have larger scale dependence $f_{NL}<10$ is shaded $n_{f_{NL}}>0.1$ is possible even for small s



 $r_{\rm dec}$

$$s \sim \frac{\text{self interaction}}{\text{quadratic}}$$

$$r_{dec} \sim \Omega_{\chi,decay}$$

Scale-dependence grows with s. Large self interaction regime CB et al; in preparation

Always find positive scale dependence but can be negative with axionic potential: Huang '09

Conclusions

- Most non-Gaussian models have a scale dependence
- Should include a scale-dependence (could be significant)
 - Powerful observable see Shandera's talk
 - Unique probe of early universe models
 - Easy to calculate using our formalism
- Can arise due to:
 - a) Multiple field effects
 - b) Self interactions of the fields
 - c) IR loop corrections see Kumar's talk
 - CB, Nurmi, Tasinato & Wands; 0911.2780 [astro-ph.CO]
 - CB, Gerstenlauer, Nurmi, Tasinato & Wands;1007.4277 [astro-ph.CO]
 - CB, Enqvist, Takahashi; 1007.5148 [astro-ph.CO]
 - CB, Enqvist, Nurmi, Takahashi; in preparation

Mixed inflaton-curvaton scenario

• The inflaton phi has Gaussian perturbations, the curvaton field chi (quadratic V) is non-Gaussian assume a small field model of inflation $\epsilon \ll \eta_{\phi\phi}$

$$n-1=2(1-w_\chi)\eta_{\phi\phi}$$

$$f_{NL}(k)=w_\chi^2(k)f_\chi$$

$$n_{f_{NL}}=2(n_\chi-n)=-4(1-w_\chi)\eta_{\phi\phi}$$
 where $w_\chi(k)=P_{\zeta_\chi}(k)/P_\zeta(k)$

• New consistency relation $n_{f_{NL}} = -2(n-1) \simeq 0.1$

• Trispectrum
$$au_{NL} = \left(\frac{6}{5}f_{NL}\right)^2\frac{1}{w_\chi}$$
 $n_{\tau_{NL}} = -3(n-1)$

Simplest case: Inflaton field

- Pure academic interest
- Analytic results
- Neglecting the non-Gaussianity of the fields at horizon exit (here not accurate), i.e. taking only the local part

$$\frac{6}{5}f_{NL} = 2\epsilon - \eta$$

$$n_{f_{NL}} = \frac{6\epsilon\eta - 8\epsilon^2 - \xi^2}{\eta - 2\epsilon}$$

 Scale dependence arises from the second-order field evolution near Hubble crossing

$$\delta_2 \phi(t_i) = \delta_2(\phi_*) + \frac{H(t_i - t_*)}{\sqrt{2\epsilon}} (8\epsilon^2 - 6\epsilon\eta + \xi^2) \delta_1^2 \phi$$

Loop corrections?

 With extreme parameter values, the bispectrum can be large through a "loop" correction

$$\zeta = \zeta_{G,\phi} + \zeta_{G,\chi}^2$$

- The bispectrum diverges in the IR
- Applying a sharp IR cut-off L

$$f_{NL} = f_{NL}^{\text{loop}} \sim \frac{P_{\zeta_{\chi}}^{3}(k)}{P_{\zeta}^{2}(k)} \ln(kL)$$

If we take L~1/H - then on CMB scales

$$n_{f_{NL}} \sim 1/\ln(kL) \sim 0.2$$
 Kumar, Leblond & Rajaraman; '09

Could be distinguishable from power law scale dependence

Boubekeur & Lyth; '05
Suyama & Takahashi; '08
Preheating:
Chambers and Rajantie '08
delta N application: Byrnes et al '10
Review: Seery '10

Talks: Kumar and Tanaka

Strong scale dependence

- Relatively small, power law scale dependence is expected
- Scale dependence could be more dramatic
- Transition of subdominant field from massive to massless can create step-function like f_{NL}
- This field generates non-Gaussianity when massless but not linear perturbations
 - Gaussian on large scales, non-Gaussian on small scales
 - Power spectrum comes from the inflaton field
 - Need to tune mass transition to be during horizon crossing of observable modes

Two-component hybrid inflation

$$W = W_0 \left(1 + \frac{1}{2} \eta_{\varphi\varphi} \frac{\varphi^2}{M_P^2} + \frac{1}{2} \eta_{\chi\chi} \frac{\chi^2}{M_P^2} \right)$$

If we choose initial conditions to maximise f_{NI} then

$$f_{NL} = \frac{5}{24} \eta_{\chi\chi} e^{2N(\eta_{\varphi\varphi} - \eta_{\chi\chi})}, \quad n_{\zeta} - 1 = \eta_{\varphi\varphi} + \eta_{\chi\chi}$$

N is the number of e-foldings from horizon crossing till the end of inflation; Scales which exit earlier are more non-Gaussian

$$n_{f_{NL}} \equiv \frac{\partial \log |f_{NL}|}{\partial \log k} = -2(\eta_{\varphi\varphi} - \eta_{\chi\chi})$$

$\boxed{\eta_{arphiarphi}}$	$\eta_{\chi\chi}$	φ_*	χ_*	f_{NL}	$n_{f_{NL}}$	$n_{\zeta}-1$	r
0.04	-0.04	1	6.8×10^{-5}	-123	-0.16	0	0.006
0.08	0.01	1	0.0018	9.27	-0.14	0.09	0.026
-0.01	-0.09	1	3×10^{-6}	-132	-0.276	-0.04	0.0007

First to calculate scale dependence of local model: Byrnes, Choi & Hall '08 ii)

Observable parameters, bispectrum and trispectrum

We define 3 non-linearity parameters

$$B_{\zeta}(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}) = \frac{6}{5} f_{NL} \left[P_{\zeta}(k_{1}) P_{\zeta}(k_{2}) + P_{\zeta}(k_{2}) P_{\zeta}(k_{3}) + P_{\zeta}(k_{3}) P_{\zeta}(k_{1}) \right]$$

$$T_{\zeta}(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}, \mathbf{k}_{4}) = \tau_{NL} \left[P_{\zeta}(|\mathbf{k}_{1} + \mathbf{k}_{3}|) P_{\zeta}(k_{3}) P_{\zeta}(k_{4}) + (11 \text{ perms}) \right]$$

$$+ \frac{54}{25} g_{NL} \left[P_{\zeta}(k_{2}) P_{\zeta}(k_{3}) P_{\zeta}(k_{4}) + (3 \text{ perms}) \right]$$

Byrnes, Sasaki & Wands '06; Seery & Lidsey '06

Note that τ_{NL} and g_{NL} both appear at leading order in the trispectrum. The coefficients have a different k dependence, $P_{\zeta} \propto k^{-3}$

Constraints
$$|f_{NL}| \lesssim 100$$
, $|\tau_{NL}| \lesssim 10^5$, $|g_{NL}| \lesssim 10^6$

LSS: Desjacques & Seljak '09; WMAP7; Smidt et al '10 a); Fergusson, Regan & Shellard 11

Planck forecasts
$$|f_{NL}| \lesssim 10$$
, $|\tau_{NL}| \lesssim 10^3$, $|g_{NL}| \lesssim 10^5$

Smidt et al '10 b)

Trispectrum: simplest case

$$\zeta = \zeta_G + \frac{3}{5} f_{NL} \zeta_G^2 + \frac{9}{25} g_{NL} \zeta_G^3 + \cdots$$

Valid if only one field generates the curvature perturbation; could be the curvaton or modulaton

• Consistency relation
$$au_{NL} = \left(\frac{6}{5}f_{NL}\right)^2$$

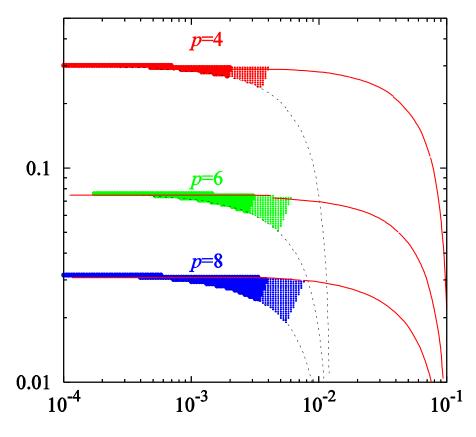
Multifield models – becomes inequality

$$au_{NL} > \left(rac{6}{5}f_{NL}
ight)^2$$
 Suyama & Takahashi '08

- The trispectrum becomes more competitive
- g_{NL} typically depends on strength of self interactions
- Often small, due to calculational preference for quadratic potentials

Large tauNL & small fNL: Ichikawa et al '08; Byrnes et al '09; Langlois & Sorbo '09 Major overview: Suyama, Takahashi, Yamaguchi, Yokoyama '10

Interacting curvaton scenario III testable region



shaded regions are testable with CMBPol at 1 and $2-\sigma$ Larger region would be testable with larger s and/or $\eta_{\sigma\sigma}$

top redline $f_{NL} = 10$ lower dashed line $f_{NL} = 100$

Interacting curvaton scenario IV Summary

- Knowledge of $f_{NL},\ n_{f_{NL}},\ g_{NL}$ would give us information on the curvaton parameters $m,\ p,\ s$
- Even a small self interaction significantly changes the model predictions
 - Makes all of the non-linearity parameters scale dependent
- The curvaton is required to have a quadratic minimum
 - Models which could have a pure self interaction potential (eg modulated reheating) may have larger scale dependence

CB, Gerstenlauer, Nurmi, Tasinato & Wands '10; see also Bernardeau '10

Easy to calculate

Scale dependence of non-Gaussianity parameters depends only on:

 derivatives of N (delta N formalism) – background quantities anyway required to calculate fNL

Delta N: Sasaki's talk

 slow-roll parameters evaluated at horizon crossing (just derivatives of the potential)

